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Legal Notices & Disclaimer

• This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The 
information in this presentation is provided for information only and is not to be relied upon for 
any other purpose than educational. Use at your own risk! Intel makes no representations or 
warranties regarding the accuracy or completeness of the information in this presentation. Intel 
accepts no duty to update this presentation based on more current information. Intel is not 
liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or 
indirectly, from the use or misuse of the information in this presentation.

• Intel technologies’ features and benefits depend on system configuration and may require 
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or 
retailer.

• No computer system can be absolutely secure. 

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is 
granted by this document.

• Intel, the Intel Core, and the Intel logo are trademarks of Intel Corporation in the United States 
and other countries. 

• *Other names and brands may be claimed as the property of others. 

• © 2017 Intel Corporation. 
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Developing a SGX Application

• SDK model: build your own SGX applications

• Porting an existing application

• Limitation 1: needs a signed, static image

• Limitation 2: virtualized ISA (no CPUID/RDTSC)

• Limitation 3: no trusted OS services

• Requires defenses against untrusted OSes
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Choose Porting Strategy

• How much OS functionality is needed?

• Little (e.g., crypto functions)      SDK

• Medium (e.g., microservices)  Shielding layers

• Heavy (e.g., language runtimes)  Library OSes

• Always ensure a secure enclave interface

• Performance is a critical factor
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Topics

• Porting challenges and OS attack vectors

• Library OS: Graphene-SGX

• System interface shield layers: SCONE, Panoply

• Dynamic page management on SGX2

• Exit-less enclaves with Eleos
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For Each Framework

• What are the target applications?

• What are the key concepts?

• What to expect? How to use?

• Where to obtain the software?
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SGX Porting Challenges

• Satisfying enclave requirements

• Defending against untrusted OS services

• Improving performance factors
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SGX Application Requirements
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SGX Application Requirements
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Porting a Legacy Application
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SGX Porting Challenges

• Satisfying enclave requirements

• Defending against untrusted OS services

• Improving performance factors
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Attack Vectors from Untrusted OS
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Iago Attacks In A Nutshell

• Semantic attacks by manipulating syscall results

• Application-specific

• Bugs that do not exist on a trusted OS
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Iago Attack Example:
SSL Random Generator Seed
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int ssl_rand_seed(…)
{

…
if (pRandSeed->nSrc == SSL_RSSRC_BUILTIN) {

struct {
time_t t;
pid_t pid;

} my_seed;

l = sizeof(my_seed);
RAND_seed((unsigned char *)&my_seed, l);

}

my_seed.t = time(NULL);
my_seed.pid = getpid();

mod_ssl (Apache)

OS can give the 
same pid and time 



SGX Shielding Frameworks

• Several work address the problem of SGX porting

• (1) Defenses against Iago attacks

• (2) Performance optimization

• (3) Compatibility features (e.g., cross compilers)

• Two approaches:

• (1) Library OSes

• (2) Shielding layers

CCS'17 Tutorial: SGX Security and Privacy 15



Key Factors

• Shielding mechanisms (especially Iago attacks)

• Attack surface

• Trusted computing base (TCB)

• OS functionality
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Library OSes

• OS components in enclave

• Define small enclave interface 

with security in mind

• Example: 

Haven [OSDI’14]

Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 17

Untrusted Host OS

LibOS

Application

Libraries

System API

Enclave Interface



Shielding Layers 

• Shielding each API

• Avoid library OS overheads

• Small TCB

• Example: SCONE, Panoply
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Comparison
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Approach Library OS Shielding Layers

Enclave 
interface

Fixed interfaces
(regardless of libOS 

functionality)

Equals the system API
needed by the application

Graphene-SGX SCONE Panoply



Trusted Computing Base
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The choice of Libc is the highest-order bits

LibOS/
Shielding 

Layer
53 kLoC 97 kLoC 10kLoC

Libc option
GLIBC

(1.1 MLoC)
MUSL

(88 kLoC)
No Libc

in enclave

Graphene-SGX SCONE Panoply



SGX Porting Challenges

• Satisfying enclave requirements

• Defending against untrusted OS services

• Improving performance factors
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Performance Factors

• Enclave creation time

• Correlated with enclave memory size (1GB requires ~3s)

• Memory access overheads

• LLC misses up to 10X

• EPC paging: 128MB shared among all enclaves
40,000 cycles for page-out and page-in

• Enclave exits

• 7,000~8,000 cycles for exit and re-enter
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Performance improvement

• Enclave creation time: EDMM on SGX2

• Dynamically adding pages at run time

• Reduce explicit & implicit exits: Eleos

• Completely exit-less enclaves

• Pinning EPC pages with software-based paging
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Topics

• Porting challenges and OS attack vectors

• Library OS: Graphene-SGX

• System interface shields: SCONE, Panoply

• EDMM on SGX2

• Exit-less enclaves with Eleos
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Graphene-SGX:
A LibOS for Unmodified Applications

• Servers, Command-line, Runtimes:

Apache, NGINX, GCC, R, Python, OpenJDK,  etc

• Multi-process APIs: fork, exec, IPC, etc

• Not perfect, but a quick, practical porting option
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The Graphene LibOS Project 
[Eurosys14]

• Open library OS for reusing Linux applications

(github.com/oscarlab/graphene)

• Inspired by Drawbridge [ASPLOS11]

and Haven [OSDI14]

• Under active development
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Unmodified Application

Process Process

LibOS LibOS

145 system calls (still growing)

Easy to port to new OS/platform



Applications in Graphene-SGX
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Untrusted
OS

1. Static initial image

2. No system calls

3. Check for untrusted 
inputs

Graphene Loader

$ SGX=1 ./pal_loader httpd [args]



Applications in Graphene-SGX
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Applications in Graphene-SGX
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Checking Enclave Interface

• Reduce enclave interface to 28 calls

• Design defense for each call

• Define explicit semantics
 knowing exactly what/how to check

• Crypto techniques

• Examples:

• Accessing integrity-sensitive files (binaries / configs)

• Process creation (see paper)
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Ex: File Integrity Check

• Ask for exact file 

content

• Verify by checksums
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Untrusted
OS

LibOS

Enclave Interfaces

GLIBC

Application Libraries

read mmap dlopen

FileMap(file,off,size)

File
Chunk

Check-
sums

Manifest

Linux system calls



Checking All 28 Enclave Calls

Examples # Result Explanation

(1) Reading a file
(2) Inter-proc 

coordination
18

Fully
Checked

(1) File checksums
(2) CPU attestation + crypto:

inter-proc TLS connection
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Yielding a thread 6 Benign Do not take any input

(1) Polling
(2) File attributes

4 Unchecked May cause DoS; Future work



Apache (5 Procs w/ IPC Semaphore)
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R Benchmarks
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Graphene-SGX Features

• Current features

• Use GLIBC by default; can use MUSL if acceptable

• A wide range of servers, command-lines, language 
runtimes tested

• Static binary support

• Limitations: cannot support shared memory

CCS'17 Tutorial: SGX Security and Privacy 35



Demo: GCC on Graphene-SGX

• Multi-process: gcccc1collect2ld

• Turn on DEBUG=1

• Attack: Try to modify the GCC binary
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Demo: GCC on Graphene-SGX
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GSC: Graphene Secure Container

• Docker images  enclaves

• Dockerfilesmanifests

• Graphene-SGX runs in container

• Mutual isolation between
OS and application
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GSC: Graphene Secure Container
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Demo: Graphene-SGX Container
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Availability

• Open-source at 

http://github.com/oscarlab/graphene

• Currently under GPLv3, switching to LGPL soon

• Contact:

• chiache@cs.stonybrook.edu

• porter@cs.unc.edu

• https://graphene-libraryos.slack.com (contact me for 
invitation)
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SCONE: A Lightweight Layer for SGX

• An enhanced C library with file and network shields

• Strictly requires no library OS

• Optimized syscall performance for enclaves
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SCONE Architecture
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SCONE C library (based on MUSL)

Asynchronous system calls

M:N threading

Network shield File system shield

Libraries

Application

SCONE module Intel SGX driver

Container (cgroups)

Inside enclave
(trusted)

Host OS kernel
(untrusted)



SCONE Architecture

• Network and FS shields:

encrypting and authenticating 

network and file contents

• MUSL: small TCB (88KLoC)

• Asynchronous system calls:

avoid enclave exits

• SCONE module (optional):

improve performance
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System Call Overheads
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Asynchronous System Calls
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Apache Throughput
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Memcached Throughput
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SCONE Language Support

• Cross compiler for several languages

• C and C++

• GO

• Rust

• Python

• PHP

• Java (partial support, still work in progress)
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Demo: SCONE Cross Compiler
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SCONE Features

• Current SCONE features

• Support static and dynamic linking

• Unmodified binaries must be position independent 
(built with –fPIC)

• Compatible with MUSL

• No multi-processing (fork / execve)
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SCONE Docker Integration

• SCONE supports (extended) Docker compose files

• Transparent attestation of services

• Transparent configurations

• Unmodified Docker Engine

• Docker engine runs outside enclave
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Availability

• Commercially available via SCONTAIN

• Acquire the software: www.scontain.com

• Contact: christof.fetzer@gmail.com
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Panoply: POSIX API with Small TCB

• A POSIX library without Libc in enclave

• Placing applications and libraries into separate 

enclaves

• 10kLoC TCB in Panoply shim library
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Panoply Architecture
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Panoply expels GLIBC outside of the enclave
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Panoply Architecture

• Micron can be an application or a library

• Multi-enclave collaboration:
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Web Server SSL Library

Operating System



Micron Generation
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Attacks on Multi-Enclave Applications
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SSL Library
Enclave

Webserver
Enclave

session_t session;
certificate_credentials_t xcred;

/* Specify callback function*/ 

/* Initialize TLS session */
init (&session, TLS_CLIENT);

certificate_set_verify_function (...); 

Set SSL 
Callback

OS

[SSL Lib]



Securing Multi-Enclave Applications
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Performance Overview
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App Panoply
Empty 

enclave
Overhead

OpenSSL 3.16 2.79 13%

H2O 8.79 6.56 34%

FreeTDS 8.74 8.60 1%

Tor 6.72 4.54 48%



Panoply Features

• Currently support 254 POSIX API

• 91 guarantee to preserve API semantics

• Multi-process: fork and exec
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Availability

• Open-source at 

https://shwetasshinde24.github.io/Panoply/

• Apache 2.0 License

• Contact: shweta24@comp.nus.edu.sg
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EDMM:
Enclave Dynamic Memory Mgmt

• Current SGX: fixed enclave memory and threads

• SGX2: adding pages at run time

• Reduce initial enclave memory size

• Dynamic thread creation

• Dynamic page protection (for dynamic loading / JIT)

• Supported in future Graphene-SGX
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Current SGX Limitations

• For integrity, each enclave 

has a static memory layout

• Signed by users

• Initialized at loading time

• Reserved heap for malloc()

• # TCS = # Threads

CCS'17 Tutorial: SGX Security and Privacy 65

Enclave

App 
data

App 
code

Enclave
code

Enclave
data

SECS

TCS (*n)TCS (*n)TCS (*n)

Preserved
heap



EDMM on SGX2

• Adding and protecting 

enclave pages at run time

• Page adding semantics:

• Normal or TCS pages

• Must be zeroed

• “Approved” by enclave
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EDMM Support in Graphene-SGX

• Compatibility and performance features

• Largely reduce startup time

• Dynamic thread creation

• Protect pages after finishing dynamic loading

• Support mprotect()
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Demo: Graphene-SGX with EDMM
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Availability

• SGX2 release date expected in 1~2 years

• EDMM support will be open-sourced as part of 

Graphene

• http://github.com/oscarlab/graphene
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Eleos: Exit-less Enclaves

• Avoids enclave exits and EPC paging

• Combined w/ SDK: Generating RPC-based interface

• Software-based paging: SUVM
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Direct Enclave Costs

• Enclave enter / exit: vs    System call:

3,300 / 3,800 cycles 250 cycles

• LLC misses: 5.6~9.5 X

• EPC paging: 40,000 cycles for evict and page-in
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Indirect Cost: LLC Pollution
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Indirect Cost: TLB Pollution
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TLB Flushes at every exits cause up to 6X slowdown

0
1
2
3
4
5
6

1 2 4 8 16 32

Sl
o

w
d

o
w

n
 f

ac
to

r

Number of keys per request

Open addressing Separate chaining
KVS server with different collision resolution:

(insensitive to TLB flushes)



RPC-based Enclave Interfaces
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SUVM: Secure User-Space Paging
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Eleos keeps EPC footprint static, to avoid fault-based exits

s_ptr<int> p = 
suvm_malloc(1024);
… 

Software
Address Translation

Page table

*p = 1;

Swap out

Encrypted

Enclave
memory

(Decrypted)

Fault Handler



Demo: Memcached on Native SGX
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Demo: Memcached with Eleos (RPC)
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Demo:
Memcached with Eleos (RPC+SUVM)
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Memcached Performance
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Availability

• Open-source available at:

http://github.com/acsl-technion/eleos

• Contact: mark@ee.technion.ac.il
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