CCS'17 Tutorial:
SGX Shielding Frameworks and
Development Tools

Chia-Che Tsai
Stony Brook University / UC Berkeley

A'someoc GCAR «riselob

intel) Legal Notices & Disclaimer

This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The
information in this presentation is provided for information only and is not to be relied upon for
any other purpose than educational. Use at your own risk! Intel makes no representations or
warranties regarding the accuracy or completeness of the information in this presentation. Intel
accepts no duty to update this presentation based on more current information. Intel is not
liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or
indirectly, from the use or misuse of the information in this presentation.

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

No computer system can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

Intel, the Intel Core, and the Intel logo are trademarks of Intel Corporation in the United States
and other countries.

*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

CCS'17 Tutorial: SGX Security and Privacy

Developing a SGX Application

* SDK model: build your own SGX applications

* Porting an existing application
* Limitation 1: needs a signed, static image

* Limitation 2: virtualized ISA (no CPUID/RDTSC)
e Limitation 3: no trusted OS services

* Requires defenses against untrusted OSes

Choose Porting Strategy

* How much OS functionality is needed?

e Little (e.g., crypto functions) =2 SDK
 Medium (e.g., microservices) =>» Shielding layers
 Heavy (e.g., language runtimes) =» Library OSes

* Always ensure a secure enclave interface

* Performance is a critical factor

Topics

* Porting challenges and OS attack vectors

* Library OS: Graphene-SGX

e System interface shield layers: SCONE, Panoply
* Dynamic page management on SGX2

e Exit-less enclaves with Eleos

For Each Framework

 What are the target applications?
* What are the key concepts?
 What to expect? How to use?

e Where to obtain the software?

SGX Porting Challenges

 Satisfying enclave requirements
* Defending against untrusted OS services

* Improving performance factors

SGX Application Requirements

Completely

isolated
“Enclave” from OS

Sensitive | Signed
Data App

Untrusted App

Initial image,
security measurement

SGX instructions
(ECREATE,EINIT)

» Untrusted

8. os

CCS'17 Tutorial: SGX Security and Privacy

SGX Application Requirements

“Enclave” 1. Static initial image

Sensitive | Signed
Data App

2. No system calls

3. Check for untrusted

inputs
Untrusted App

Most Linux applications:
(1) Dynamic linked

2 Untrusted (2) Built-in syscall usage
& os

CCS'17 Tutorial: SGX Security and Privacy

Porting a Legacy Application

W= Apache Web Server

modules I|brar|es

i mod_ i mod_ iimod_:: lib i 1ib i 1ib
- auth :: : mime i ossl i cr‘ypt pcre xm12

1. Statically linking
all binaries

2. Bypassing
instructions
(CPUID/RDTSC)

3. Exiting enclave
for system calls

read()/clone()

CCS'17 Tutorial: SGX Security and Privacy

Security Challenge!

10

SGX Porting Challenges

* Defending against untrusted OS services

Attack Vectors from Untrusted OS

lago Attacks

Apache Web Server [Checkoway, ASPLOS 13]

failed to correctly check
syscall results

read()

Manipulate
results to attack
enclave

Exit enclave

data, size

Untrusted Host OS

CCS'17 Tutorial: SGX Security and Privacy 12

lago Attacks In A Nutshell

* Semantic attacks by manipulating syscall results

* Application-specific

* Bugs that do not exist on a trusted OS

CCS'17 Tutorial: SGX Security and Privacy

Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface

Stephen Checkoway
Johns Hopkins University
s@cs.jhu.edu

Abstract
In recent years. researchers have proposed systems for running
trusted code on an untrusted operating system. Protection mech-
anisms deployed by such systems keep a malicious kernel from
directly manipulating a trusted application’s state. Under such sys-
tems. the application and kernel are. conceptually, peers, and the
system call API defines an RPC interface between them.

We introduce lago attacks, attacks that a malicious kernel can

Hovav Shacham
UC San Diego
hovav@cs.ucsd.edu

Listing 1. A Linux program that can be completely compromised
by an lago attack.
#include <stdlib.h>
int main() ¢{
void *p = malloc(100);
}

lago Attack Example:
SSL Random Generator Seed

. mod_ssl (Apache)
int ssl rand seed(..)

my seed.pid = getpid();

1 = sizeof(my_seed);
RAND _seed((unsigned char *)&my seed, 1);

{
if (pRandSeed->nSrc == SSL_RSSRC BUILTIN) {
struct {
time t t;
pid t pid;
} my_seed; OS can give the

IR YOUNEYY same pid and time

CCS'17 Tutorial: SGX Security and Privacy

14

SGX Shielding Frameworks

e Several work address the problem of SGX porting

e (1) Defenses against lago attacks
* (2) Performance optimization
* (3) Compatibility features (e.g., cross compilers)

* Two approaches:
e (1) Library OSes
* (2) Shielding layers

Key Factors

 Shielding mechanisms (especially lago attacks)
 Attack surface
* Trusted computing base (TCB)

e OS functionality

Library OSes

[application | || ¢ OS components in enclave

| Libraries |

System API

 Define small enclave interface
with security in mind

LibOS

* Example:
Haven [OSDI'14]
Graphene-SGX

Enclave Interface

Untrusted Host OS

CCS'17 Tutorial: SGX Security and Privacy 17

Shielding Layers

* Shielding each API

| Application

| Libraries |

| Shim |

* Avoid library OS overheads

e Small TCB

. :
— Example: SCONE, Panoply
Untrusted Host OS

CCS'17 Tutorial: SGX Security and Privacy 18

Comparison

Graphene-SGX

SCONE Panoply

Approach Library OS

Shielding Layers

Fixed interfaces
(regardless of libOS
functionality)

Enclave
interface

Equals the system API
needed by the application

CCS'17 Tutorial: SGX Security and Privacy

19

Trusted Computing Base

Graphene-SGX SCONE Panoply
LibOS/
Shielding 53 kLoC 97 kLoC 10kLoC
Layer
ET GLIBC MUSL No Libc
P (1.1 MLoC) (88 kLoC) in enclave

The choice of Libc is the highest-order bits

CCS'17 Tutorial: SGX Security and Privacy 20

SGX Porting Challenges

* Improving performance factors

Performance Factors

* Enclave creation time

* Correlated with enclave memory size (1GB requires ~3s)

* Memory access overheads

* LLC misses up to 10X

 EPC paging: 128MB shared among all enclaves
40,000 cycles for page-out and page-in

* Enclave exits
e 7,000~8,000 cycles for exit and re-enter

Performance improvement

* Enclave creation time: EDMM on SGX2

* Dynamically adding pages at run time

* Reduce explicit & implicit exits: Eleos

* Completely exit-less enclaves
* Pinning EPC pages with software-based paging

Topics

* Porting challenges and OS attack vectors
* Library OS: Graphene-SGX
e System interface shields: SCONE, Panoply

 EDMM on SGX2

e Exit-less enclaves with Eleos

CCS'17 Tutorial: SGX Security and Privacy

24

Graphene-SGX:
A LibOS for Unmodified Applications

e Servers, Command-line, Runtimes:
Apache, NGINX, GCC, R, Python, OpenlJDK, etc

* Multi-process APIs: fork, exec, IPC, etc

* Not perfect, but a quick, practical porting option

Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX

Chia-Che Tsai Donald E. Porter Mona Vij
Stony Brook University University of North Carolina at Chapel Hill Intel Corporation
and Fortanix

Abstract of commodity operating systems is not without blemish.
Thus, a significant number of users would benefit from

Intel SGX hardware enables applications to protect . - .
Pp p running applications on SGX as soon as possible.

themselves from potentially-malicious OSes or hyper-
visors. In cloud computing and other systems, many Unfortunately, applications do not “just work™ on
users and applications could benefit from SGX. Unfortu- SGX. SGX imposes a number of restrictions on enclave

nately, current applications will not work out-of-the-box ~ code that require application changes or a layer of in-
on SGX. Although previous work has shown that a li- direction. Some of these restrictions are motivated by

The Graphene LibOS Project
[Eurosys14]

e Open library OS for reusing Linux applications
(github.com/oscarlab/graphene)

* Inspired by Drawbridge [aspLos11]
and Haven [ospi14]

e Under active development

Easy to port to new OS/platform

CCS'17 Tutorial: SGX Security and Privacy 26

Applications in Graphene-SGX

1. Static initial image

2. No system calls

3. Check for untrusted
inputs

$ SGX=1 ./pal_loader httpd [args]

Graphene Loader

Untrusted
“A OS

CCS'17 Tutorial: SGX Security and Privacy

27

Applications in Graphene-SGX

Application | Libraries

Modified GLIBC

Mani
fest

Untrusted

CCS'17 Tutorial: SGX Security and Privacy

‘ Graphene LibOS

1. Static initial image ‘/
2. No system calls

3. Check for untrusted
inputs

Application
Enclave Libraries

measurement €@ Modified GLIBC
Manifest

Graphene-SGX
Signing Tool
Trusted Host

N
[0}

Applications in Graphene-SGX

1. Static initial image ‘/
2. No system calls ‘/

3. Check for untrusted
inputs

Application | Libraries

Modified GLIBC

Linux system calls

System calls
redirected
into library OS

Fixed interface
to check

« Untrusted
0S

CCS'17 Tutorial: SGX Security and Privacy 29

Checking Enclave Interface

e Reduce enclave interface to 28 calls

* Design defense for each call

e Define explicit semantics
=» knowing exactly what/how to check

* Crypto techniques

* Examples:
» Accessing integrity-sensitive files (binaries / configs)
* Process creation (see paper)

Ex: File Integrity Check

Application | Libraries

GLIBC

dlopen

read mmap

Linux system calls

LibOS

FileMap(file,off,size)

Enclave Interfaces

CCS'17 Tutorial: SGX Security and Privacy

1 Chunk

Untrusted
OS

Manifest
Check-
sums

File

e Ask for exact file
content

* Verify by checksums

31

Checking All 28 Enclave Calls

Examples # Result Explanation
(1) Reading a file Eull (1) File checksums
(2) Inter-proc 18 Y (2) CPU attestation + crypto:
. .. Checked))
coordination inter-proc TLS connection
Yielding a thread 6 Benign Do not take any input

(1) Polling

(2) File attributes 4 Unchecked

May cause DoS; Future work

CCS'17 Tutorial: SGX Security and Privacy

32

Apache (5 Procs w/ IPC Semaphore)

Linux

Graphene-SGX:
Impact by enclave exits

Graphene:

little impact (~5%)

& checking OS inputs on top throughput

Average Response
Time (S)

0 2 4 6 8 10 12
Throughput (k.req/S)

CCS'17 Tutorial: SGX Security and Privacy 33

R Benchmarks

overhead

~1x

FTFTFF

FFF Ty rrsrsy @

Graphene-SGX

A\

ithout SGX)

EITTTTTTTTT. 7 o

v

=
%2}
c
@
Q
X
@
w
—
14%)

(Vp]
O
o
fe!
v.A.m

@)
O 3
v o
v >
nS
en
c 3
o <
mW

@)
=
Q
>

B Graphene (w

¥ Linux
N\
X
o)
N

Xnuil 0} peaysanQ

Workloads

34

CCS'17 Tutorial: SGX Security and Privacy

Graphene-SGX Features

e Current features

e Use GLIBC by default; can use MUSL if acceptable

* A wide range of servers, command-lines, language
runtimes tested

e Static binary support
 Limitations: cannot support shared memory

Demo: GCC on Graphene-SGX

* Multi-process: gcc=>ccl—>collect2—2>1d
* Turn on DEBUG=1

» Attack: Try to modify the GCC binary

Demo: GCC on Graphene-SGX

GSC: Graphene Secure Container

Docker Container

* Docker images =» enclaves

Enclave

* Dockerfiles = manifests Application

* Graphene-SGX runs in container U 7i7ias

rapene-

 Mutual isolation between
OS and application

Hardware

CCS'17 Tutorial: SGX Security and Privacy 38

GSC: Graphene Secure Container

Docker

/" Image \
Application

= /)

Application
Developer

Conversion

GSC Image ﬂ

Application

] JETRES

Graphene-SGX

BootStrapper

\&

CCS'17 Tutorial: SGX Security and Privacy

Docker Container

Enclave

Application

Libraries

Graphene-SGX

oottrapper

VMM

Hardware

39

Demo: Graphene-SGX Container

& | Graphens-Bex & Gesphene-Be [0 1 Gor apharm Beox [1]

lleil@leigraphene:~/workspace/docker_work/il_gsc-gscs J}

CCS'17 Tutorial: SGX Security and Privacy

41

Availability

* Open-source at
http://github.com/oscarlab/graphene

e Currently under GPLv3, switching to LGPL soon

* Contact:

e chiache@cs.stonybrook.edu

e porter@cs.unc.edu

 https://graphene-libraryos.slack.com (contact me for
invitation)

CCS'17 Tutorial: SGX Security and Privacy

42

http://github.com/oscarlab/graphene
mailto:chiache@cs.stonybrook.edu
mailto:porter@cs.unc.edu
https://graphene-libraryos.slack.com/

SCONE: A Lightweight Layer for SGX

* An enhanced C library with file and network shields

e Strictly requires no library OS

* Optimized syscall performance for enclaves

CCS'17 Tutorial: SGX Security and Privacy

SCONE: Secure Linux Containers with Intel SGX

Sergei Arnautov', Bohdan Trach', Franz Grcgorl. Thomas Knauth', Andre Martin',
el ; 2 P . 2 s or.2 . 2
Christian Priebe”, Joshua Lind”, Divya Muthukumaran™, Dan O’Keeffe™, Mark L Stillwell™,
. 3 . g 5 3 a 2 s o
David Goltzsche”, David Eycrs4. Riidiger Kapitza®, Peter Pietzuch”, and Christof Fetzer'

! Fakultit Informatik, TU Dresden, christof.fetzer@tu-dresden.de
zDepr. of Computing, Imperial College London, prp@imperial.ac.uk
'zllz/k)r'lil(llik. TU Braunschweig, rrkapitz@ibr.cs.tu-bs.de

4 . ; ; ; ;
Dept. of Computer Science, University of Otago, dme@cs.otago.ac.nz

Abstract

In multi-tenant environments, Linux containers managed
by Docker or Kubernetes have a lower resource footprint,
faster startup times, and higher I/O performance com-
pared to virtual machines (VMs) on hypervisors. Yet

tor T ORI AN EECEY LY

mechanisms focus on protecting the environment from
accesses by untrusted containers. Tenants, however,
want to protect the confidentiality and integrity of their
application data from accesses by unauthorized parties—
not only from other containers but also from higher-
privileged system software, such as the OS kernel and

SCONE Architecture

Application

Libraries

Network shield

File system shield

M:N threading

SCONE C library (based on MUSL)

Asynchronous system calls

SCONE module

Intel SGX driver

Container (cgroups)

CCS'17 Tutorial: SGX Security and Privacy

Inside enclave
(trusted)

44

SCONE Architecture

Network and FS shields:
Application encrypting and authenticating

Libraries network and file contents
Network shield || File system shield

M:N threading
SCONE C library (based on MUSL)

MUSL: small TCB (88KLoC)

Asynchronous system calls:
avoid enclave exits

Asynchronous system calls
]

SCONE module Intel SGX driver

SCONE module (optional):
improve performance

Container (cgroups)

System Call Overheads

> 100,000
@ 10,000
S C
S o
@ o 1,000
<8
73 E LO0 enclave exits
ES qo - Pwrite(Jwith32bytebuffer
s = e 4 cores with hyper threading
> 1
1 2 4 8
Threads

CCS'17 Tutorial: SGX Security and Privacy 46

Asynchronous System Calls

§ 100,000 asyr/:c W|t2010/thread -- native
g ’-510'000 aCIeveS ..
S G
E © 1,000
=<
S8 100
£ 8
R T 1
(72
>
n 1
1 2 3 4 5 6 7 8

Threads

CCS'17 Tutorial: SGX Security and Privacy a7

Apache Throughput

4
§ ; sync async | native
o
(&)
Q
&L 2
>
c
S 1
s
©
-l

0

0 15,000 30,000 45,000 60,000

Throughput (requests / second)

Memcached Throughput

375 * YCSB workload A (50/50)
e Data fits into EPC

- 3 _
£ 5 o5 glibc + stunnel \, async
> . | sync
c 1.5 inline encryption has
bt less overhead than TLS
8 075 proxy

0

0 75000 150000 225000 300000

Throughput (operations / second)

CCS'17 Tutorial: SGX Security and Privacy 49

SCONE Language Support

* Cross compiler for several languages
e Cand C++
* GO
* Rust
* Python
* PHP
* Java (partial support, still work in progress)

Demo: SCONE Cross Compiler

sergey@beast:~/workspace/scone$

SCONE Hello World DEMO

SCONE Features

e Current SCONE features

e Support static and dynamic linking

* Unmodified binaries must be position independent
(built with —fPIC)

 Compatible with MUSL
* No multi-processing (fork / execve)

SCONE Docker Integration

* SCONE supports (extended) Docker compose files

* Transparent attestation of services
* Transparent configurations

 Unmodified Docker Engine

* Docker engine runs outside enclave

Availability

 Commercially available via SCONTAIN

* Acquire the software: www.scontain.com

e Contact: christof.fetzer@gmail.com

CCS'17 Tutorial: SGX Security and Privacy

54

http://www.scontain.com/
mailto:christof.fetzer@gmail.com

Panoply: POSIX APl with Small TCB

* A POSIX library without Libc in enclave

* Placing applications and libraries into separate

enclaves

* 10kLoC TCB in Panoply shim library

CCS'17 Tutorial: SGX Security and Privacy

PANOPLY: Low-TCB Linux Applications
with SGX Enclaves

Shweta Shinde Dat Le Tien®

Shruti Tople Prateek Saxena

National University of Singapore University of Oslo National University of Singapore National University of Singapore

shweta24 @comp.nus.edu.sg dattl@ifi.uio.no

Abstract—Intel SGX, a new security capability in emerging
CPUs, allows user-level application code to execute in hardware-
isolated enclaves. Enclave memory is isolated from all other
software on the system, even from the privileged OS or hypervi-
sor. While being a promising hardware-rooted building block,
enclaves have severely limited capabilities, such as no native
access to system calls and standard OS abstractions. These OS
abstractions are used ubiquitously in real-world applic

shruti90@ comp.nus.edu.sg

prateeks @comp.nus.edu.sg

has been a threat to privileged software layer, often targeting
vulnerabilities in privileged code such as the OS. In this paper,
we envision providing the benefits of privilege separation and
isolation based on a strong line of defense against OS-resident
malware. Such a defense is based on a new trusted computing
primitive, which can isolate a sensitive user-level application
from a compromised OS. Hardware support for this primitive

Panoply Architecture

“Micron”

Inside enclave
(Trusted)

| Enclave-bound Logic |

‘ Panoply Shim Lib Trusted SGX Lib ‘

Non-enclave Untrusted

Linux User-level Process

Outside enclave
(Untrusted)

Panoply expels GLIBC outside of the enclave

CCS'17 Tutorial: SGX Security and Privacy 56

Panoply Architecture

* Micron can be an application or a library

 Multi-enclave collaboration:

)

Web Server I—®—>

SSL Library

CCS'17 Tutorial: SGX Security and Privacy

57

Micron Generation

(1) Compiler
instrumentation

Add calls to
Panoply API

Adding flow |
checks

(2) Creating enclaves

»

Enclave-bound |

code

p
Panoply | (Intel

Shim SDK

Annotations Panoply cross-compiler

CCS'17 Tutorial: SGX Security and Privacy

Panoply
application

58

Attacks on Multi-Enclave Applications

session_t session;
certificate_credentials t xcred;

/* Specify callback function*/
certificate_set verify function (...); EENNHES]

/* Initialize TLS session */
init (&session, TLS CLIENT);

SSL Library
Enclave

Webserver
Enclave

SetSSL
Callback

CCS'17 Tutorial: SGX Security and Privacy 59

Securing Multi-Enclave Applications

Enclave Pair-wise

Identlty Nonce
CaII Ack

Enclave 1 Enclave 2
Attack Defenses
Spoofing Sender / Receiver Authentication
Replay Message Freshness
Silent Drops Reliable Delivery

CCS'17 Tutorial: SGX Security and Privacy 60

Performance Overview

App Panoply eEnncIII::/ye Overhead
OpenssL OSpSeLn 3.16 2.79 13%
H20 H20 8.79 6.56 34%
FreeTDS [osTDS 8.74 8.60 1%

Tor Tor 6.72 4.54 48%

CCS'17 Tutorial: SGX Security and Privacy

61

Panoply Features

* Currently support 254 POSIX API
* 91 guarantee to preserve APl semantics

* Multi-process: fork and exec

Availability

* Open-source at
https://shwetasshinde24.github.io/Panoply/

* Apache 2.0 License

* Contact: shweta24@comp.nus.edu.sg

CCS'17 Tutorial: SGX Security and Privacy

63

https://shwetasshinde24.github.io/Panoply/
mailto:shweta24@comp.nus.edu.sg

EDMM:
Enclave Dynamic Memory Mgmt

* Current SGX: fixed enclave memory and threads

e SGX2: adding pages at run time

* Reduce initial enclave memory size
* Dynamic thread creation
* Dynamic page protection (for dynamic loading / JIT)

e Supported in future Graphene-SGX

Current SGX Limitations

[secs |

-

(

TCS (*n) |

7~

G

Preserved

heap

N\

y

CCS'17 Tutorial: SGX Security and Privacy

Enclave
data
Enclave
code

* For integrity, each enclave
has a static memory layout
 Signed by users
* |nitialized at loading time

e Reserved heap for malloc()

e # TCS = # Threads

65

EDMM on SGX2

* Adding and protecting
ﬁ[enclave pages at run time

* Page adding semantics:

[New page

 Normal or TCS pages

* Must be zeroed
Calg * “Approved” by enclave
Enclave
code

CCS'17 Tutorial: SGX Security and Privacy

66

EDMM Support in Graphene-SGX

* Compatibility and performance features

 Largely reduce startup time

* Dynamic thread creation

* Protect pages after finishing dynamic loading
e Support mprotect()

Demo: Graphene-SGX with EDMM

leifepc@leifepc:~/work/graphene/Lib0S/shim/test/apps/pythons 1s
benchmarks.tar.gz gai.conf hosts Makefile Python-2.7.9.tgz python.manifest.temp
Leifepc@leifepc:~/work/graphene/Lib0S/shim/test/apps/pythons §

CCS'17 Tutorial: SGX Security and Privacy

69

Availability

* SGX2 release date expected in 1~2 years

* EDMM support will be open-sourced as part of
Graphene
* http://github.com/oscarlab/graphene

CCS'17 Tutorial: SGX Security and Privacy

70

http://github.com/oscarlab/graphene

Eleos: Exit-less Enclaves

* Avoids enclave exits and EPC paging

* Combined w/ SDK: Generating RPC-based interface

* Software-based paging: SUVM

CCS'17 Tutorial: SGX Security and Privacy

Eleos: ExitLess OS Services for SGX Enclaves

Meni Orenbach, Pavel Lifshits, Marina Minkin, Mark Silberstein

Technion - Israel Institute of Technology

Abstract

Intel Software Guard eXtensions (SGX) enable secure and
trusted execution of user code in an isolated enclave to pro-
tect against a powerful adversary. Unfortunately, running
I/O-intensive. memory-demanding server applications in en-
claves leads to significant performance degradation. Such
applications put a substantial load on the in-enclave system
call and secure paging mechanisms, which turn out to be the
main reason for the application slowdown. In addition to the
high direct cost of thousands-of-cycles long SGX manage-
ment instructions the<se mechanismes incur the hieh indirect

OS and/or a hypervisor, yet the code running in the enclave
may access untrusted memory of the owner process.

While SGX provides the convenience of a standard x86
execution environment inside the enclave, there are impor-
tant differences in the way enclaves manage their private
memory and interact with the host OS.

First, because an enclave may only run in user mode,
OS services. e.g.. system calls, are not directly accessible.
Instead, today’s SGX runtime forces the enclave to exit, that
is, to securely transition from trusted to untrusted mode, and
to re-enter the enclave after the privileged part of the system

Direct Enclave Costs

* Enclave enter / exit: s System call:
3,300/ 3,800 cycles 250 cycles

e LLC misses: 5.679.5 X

e EPC paging: 40,000 cycles for evict and page-in

CCS'17 Tutorial: SGX Security and Privacy

72

Indirect Cost: LLC Pollution

KVS server
5 2.5 with batched requests
hd
E 2
c 1.5
E 1 l I I I
©
S 05
o
»n O

32,768 65,546 131,072 262,144 524,288

Number of keys per request

LLC pollution causes up to 2X slowdown

CCS'17 Tutorial: SGX Security and Privacy 73

Indirect Cost: TLB Pollution

KVS server with different collision resolution:

® Open addressing W Separate chaining
(insensitive to TLB flushes)

1 2 4 8 16 32

Number of keys per request

Slowdown factor
O R N W™ U O

TLB Flushes at every exits cause up to 6X slowdown

CCS'17 Tutorial: SGX Security and Privacy 74

RPC-based Enclave Interfaces

Outside enclave (Untrusted) Inside enclave (Trusted)

RPC
Thread Pool

Execute

Enclave
Software

untrusted_call()

RPC Queue

Spinlock

>

75

CCS'17 Tutorial: SGX Security and Privacy

SUVM: Secure User-Space Paging

S_ptr<int>p =
suvm_malloc(1024);

*p=1;

Enclave
Software memory

Address Translation (Decrypted)

v

Page table

Fault Handler ‘ |

Swap out

Eleos keeps EPC footprint static, to avoid fault-based exits

CCS'17 Tutorial: SGX Security and Privacy 76

Demo: Memcached on Native SGX

user@sgx:~/demo$ |

Demo: Memcached with Eleos (RPC)

user@sgx:~/demo$ §

Demo:
Memcached with Eleos (RPC+SUVM)

user@sgx:~/demo$ [

Memcached Performance

o 250
E 203.0
= 200 165.3

c 134.9

= 150

2 100

3

- 50

(q0)

m 0

Native SGX Eleos RPC Eleos
RPC+SUVM

PRC improves 23%, RPC+SUVM improves 51%

CCS'17 Tutorial: SGX Security and Privacy 80

Availability

* Open-source available at:
http://github.com/acsl-technion/eleos

* Contact: mark@ee.technion.ac.il

CCS'17 Tutorial: SGX Security and Privacy

81

http://github.com/acsl-technion/eleos
mailto:mark@ee.technion.ac.il

Acknowledgement

Assistance from the following individuals:

e Christof Fetzer (TU Dresden)

* LiLei (Intel Labs)

 Meni Orenbach (Technion)

* Donald E. Porter (UNC at Chapel Hill / Fortanix)
e Shweta Shinde (Natl. Univ. of Singapore)

* Mark Silberstein (Technion)

Mona Vij (Intel Labs)

