
CCS’17 Tutorial:
SGX Shielding Frameworks and

Development Tools

Chia-Che Tsai
Stony Brook University / UC Berkeley

Legal Notices & Disclaimer

• This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The
information in this presentation is provided for information only and is not to be relied upon for
any other purpose than educational. Use at your own risk! Intel makes no representations or
warranties regarding the accuracy or completeness of the information in this presentation. Intel
accepts no duty to update this presentation based on more current information. Intel is not
liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or
indirectly, from the use or misuse of the information in this presentation.

• Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

• No computer system can be absolutely secure.

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

• Intel, the Intel Core, and the Intel logo are trademarks of Intel Corporation in the United States
and other countries.

• *Other names and brands may be claimed as the property of others.

• © 2017 Intel Corporation.

CCS'17 Tutorial: SGX Security and Privacy 2

Developing a SGX Application

• SDK model: build your own SGX applications

• Porting an existing application

• Limitation 1: needs a signed, static image

• Limitation 2: virtualized ISA (no CPUID/RDTSC)

• Limitation 3: no trusted OS services

• Requires defenses against untrusted OSes

CCS'17 Tutorial: SGX Security and Privacy 3

Choose Porting Strategy

• How much OS functionality is needed?

• Little (e.g., crypto functions)  SDK

• Medium (e.g., microservices)  Shielding layers

• Heavy (e.g., language runtimes)  Library OSes

• Always ensure a secure enclave interface

• Performance is a critical factor

CCS'17 Tutorial: SGX Security and Privacy 4

Topics

• Porting challenges and OS attack vectors

• Library OS: Graphene-SGX

• System interface shield layers: SCONE, Panoply

• Dynamic page management on SGX2

• Exit-less enclaves with Eleos

CCS'17 Tutorial: SGX Security and Privacy 5

For Each Framework

• What are the target applications?

• What are the key concepts?

• What to expect? How to use?

• Where to obtain the software?

CCS'17 Tutorial: SGX Security and Privacy 6

SGX Porting Challenges

• Satisfying enclave requirements

• Defending against untrusted OS services

• Improving performance factors

CCS'17 Tutorial: SGX Security and Privacy 7

SGX Application Requirements

CCS'17 Tutorial: SGX Security and Privacy 8

Untrusted
OS

Untrusted App

SGX instructions
(ECREATE,EINIT)

“Enclave”

Signed
App

Sensitive
Data

Completely
isolated
from OS

Initial image,
security measurement

SGX Application Requirements

CCS'17 Tutorial: SGX Security and Privacy 9

1. Static initial image

2. No system calls

3. Check for untrusted
inputs

Most Linux applications:
(1) Dynamic linked
(2) Built-in syscall usageUntrusted

OS

Untrusted App

“Enclave”

Signed
App

Sensitive
Data

Porting a Legacy Application

CCS'17 Tutorial: SGX Security and Privacy 10

Apache Web Server

libc

mod_
auth

mod_
mime

mod_
ssl

modules

lib
crypt

lib
pcre

lib
xml2

libraries

lipreadlibm

libsgx

2. Bypassing
instructions
(CPUID/RDTSC)

1. Statically linking
all binaries

read() clone()

Exit enclave

read()/clone()

3. Exiting enclave
for system calls

Security Challenge!

SGX Porting Challenges

• Satisfying enclave requirements

• Defending against untrusted OS services

• Improving performance factors

CCS'17 Tutorial: SGX Security and Privacy 11

Attack Vectors from Untrusted OS

CCS'17 Tutorial: SGX Security and Privacy 12

Apache Web Server

Untrusted Linux

Iago Attacks
[Checkoway, ASPLOS 13]

read()

read()

Exit enclave

Untrusted Host OS

failed to correctly check
syscall results

Manipulate
results to attack
enclavedata, size

Iago Attacks In A Nutshell

• Semantic attacks by manipulating syscall results

• Application-specific

• Bugs that do not exist on a trusted OS

CCS'17 Tutorial: SGX Security and Privacy 13

Iago Attack Example:
SSL Random Generator Seed

CCS'17 Tutorial: SGX Security and Privacy 14

int ssl_rand_seed(…)
{

…
if (pRandSeed->nSrc == SSL_RSSRC_BUILTIN) {

struct {
time_t t;
pid_t pid;

} my_seed;

l = sizeof(my_seed);
RAND_seed((unsigned char *)&my_seed, l);

}

my_seed.t = time(NULL);
my_seed.pid = getpid();

mod_ssl (Apache)

OS can give the
same pid and time

SGX Shielding Frameworks

• Several work address the problem of SGX porting

• (1) Defenses against Iago attacks

• (2) Performance optimization

• (3) Compatibility features (e.g., cross compilers)

• Two approaches:

• (1) Library OSes

• (2) Shielding layers

CCS'17 Tutorial: SGX Security and Privacy 15

Key Factors

• Shielding mechanisms (especially Iago attacks)

• Attack surface

• Trusted computing base (TCB)

• OS functionality

CCS'17 Tutorial: SGX Security and Privacy 16

Library OSes

• OS components in enclave

• Define small enclave interface

with security in mind

• Example:

Haven [OSDI’14]

Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 17

Untrusted Host OS

LibOS

Application

Libraries

System API

Enclave Interface

Shielding Layers

• Shielding each API

• Avoid library OS overheads

• Small TCB

• Example: SCONE, Panoply

CCS'17 Tutorial: SGX Security and Privacy 18

Untrusted Host OS

Shim

Application

Libraries

System API

Comparison

CCS'17 Tutorial: SGX Security and Privacy 19

Approach Library OS Shielding Layers

Enclave
interface

Fixed interfaces
(regardless of libOS

functionality)

Equals the system API
needed by the application

Graphene-SGX SCONE Panoply

Trusted Computing Base

CCS'17 Tutorial: SGX Security and Privacy 20

The choice of Libc is the highest-order bits

LibOS/
Shielding

Layer
53 kLoC 97 kLoC 10kLoC

Libc option
GLIBC

(1.1 MLoC)
MUSL

(88 kLoC)
No Libc

in enclave

Graphene-SGX SCONE Panoply

SGX Porting Challenges

• Satisfying enclave requirements

• Defending against untrusted OS services

• Improving performance factors

CCS'17 Tutorial: SGX Security and Privacy 21

Performance Factors

• Enclave creation time

• Correlated with enclave memory size (1GB requires ~3s)

• Memory access overheads

• LLC misses up to 10X

• EPC paging: 128MB shared among all enclaves
40,000 cycles for page-out and page-in

• Enclave exits

• 7,000~8,000 cycles for exit and re-enter

CCS'17 Tutorial: SGX Security and Privacy 22

Performance improvement

• Enclave creation time: EDMM on SGX2

• Dynamically adding pages at run time

• Reduce explicit & implicit exits: Eleos

• Completely exit-less enclaves

• Pinning EPC pages with software-based paging

CCS'17 Tutorial: SGX Security and Privacy 23

Topics

• Porting challenges and OS attack vectors

• Library OS: Graphene-SGX

• System interface shields: SCONE, Panoply

• EDMM on SGX2

• Exit-less enclaves with Eleos

CCS'17 Tutorial: SGX Security and Privacy 24

Graphene-SGX:
A LibOS for Unmodified Applications

• Servers, Command-line, Runtimes:

Apache, NGINX, GCC, R, Python, OpenJDK, etc

• Multi-process APIs: fork, exec, IPC, etc

• Not perfect, but a quick, practical porting option

CCS'17 Tutorial: SGX Security and Privacy 25

The Graphene LibOS Project
[Eurosys14]

• Open library OS for reusing Linux applications

(github.com/oscarlab/graphene)

• Inspired by Drawbridge [ASPLOS11]

and Haven [OSDI14]

• Under active development

CCS'17 Tutorial: SGX Security and Privacy 26

Unmodified Application

Process Process

LibOS LibOS

145 system calls (still growing)

Easy to port to new OS/platform

Applications in Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 27

Untrusted
OS

1. Static initial image

2. No system calls

3. Check for untrusted
inputs

Graphene Loader

$ SGX=1 ./pal_loader httpd [args]

Applications in Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 28

Untrusted
OS

Graphene LibOS

Modified GLIBC

Application Libraries

Application
Libraries

Modified GLIBC
Manifest

Graphene-SGX
Signing Tool

Enclave
measurement

Mani
fest

1. Static initial image

2. No system calls

3. Check for untrusted
inputs

✓

Trusted Host

Applications in Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 29

Untrusted
OS

Graphene LibOS

Modified GLIBC

Application Libraries

Linux system calls

Enclave Interface (28 calls)

Mani
fest

1. Static initial image

2. No system calls

3. Check for untrusted
inputs

System calls
redirected

into library OS

✓

✓

Fixed interface
to check

Checking Enclave Interface

• Reduce enclave interface to 28 calls

• Design defense for each call

• Define explicit semantics
 knowing exactly what/how to check

• Crypto techniques

• Examples:

• Accessing integrity-sensitive files (binaries / configs)

• Process creation (see paper)

CCS'17 Tutorial: SGX Security and Privacy 30

Ex: File Integrity Check

• Ask for exact file

content

• Verify by checksums

CCS'17 Tutorial: SGX Security and Privacy 31

Untrusted
OS

LibOS

Enclave Interfaces

GLIBC

Application Libraries

read mmap dlopen

FileMap(file,off,size)

File
Chunk

Check-
sums

Manifest

Linux system calls

Checking All 28 Enclave Calls

Examples # Result Explanation

(1) Reading a file
(2) Inter-proc

coordination
18

Fully
Checked

(1) File checksums
(2) CPU attestation + crypto:

inter-proc TLS connection

CCS'17 Tutorial: SGX Security and Privacy 32

Yielding a thread 6 Benign Do not take any input

(1) Polling
(2) File attributes

4 Unchecked May cause DoS; Future work

Apache (5 Procs w/ IPC Semaphore)

CCS'17 Tutorial: SGX Security and Privacy 33

0

2

4

6

0 2 4 6 8 10 12

A
ve

ra
ge

 R
e

sp
o

n
se

Ti

m
e

 (
S)

Throughput (k.req/S)

Linux

30%
loss

Graphene:
little impact (~5%)
on top throughput

Graphene-SGX:
Impact by enclave exits
& checking OS inputs

R Benchmarks

CCS'17 Tutorial: SGX Security and Privacy 34

O
ve

rh
e

ad
 t

o
 L

in
u

x

Workloads

Linux Graphene (without SGX) Graphene-SGX

10x

0%

~1x
overhead

Graphene-SGX:
Memory-intensive workloads

are expensive

Graphene-SGX Features

• Current features

• Use GLIBC by default; can use MUSL if acceptable

• A wide range of servers, command-lines, language
runtimes tested

• Static binary support

• Limitations: cannot support shared memory

CCS'17 Tutorial: SGX Security and Privacy 35

Demo: GCC on Graphene-SGX

• Multi-process: gcccc1collect2ld

• Turn on DEBUG=1

• Attack: Try to modify the GCC binary

CCS'17 Tutorial: SGX Security and Privacy 36

Demo: GCC on Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 37

GSC: Graphene Secure Container

• Docker images  enclaves

• Dockerfilesmanifests

• Graphene-SGX runs in container

• Mutual isolation between
OS and application

CCS'17 Tutorial: SGX Security and Privacy 38

Docker
Engine

Hardware

VMM

OS

Docker Container

Application

Libraries

Graphene-SGX

Enclave

BootStrapper

GSC: Graphene Secure Container

CCS'17 Tutorial: SGX Security and Privacy 39

Docker
Engine

Hardware

VMM

OS

Docker Container

Application

Libraries

Graphene-SGX

Enclave

BootStrapper

Docker
Image

GSC Engine
(GSCE)

Conversion

Libraries

Application
Developer

GSC Image

Libraries

Graphene-SGX

BootStrapper

Application

Application

Demo: Graphene-SGX Container

CCS'17 Tutorial: SGX Security and Privacy 40

CCS'17 Tutorial: SGX Security and Privacy 41

Availability

• Open-source at

http://github.com/oscarlab/graphene

• Currently under GPLv3, switching to LGPL soon

• Contact:

• chiache@cs.stonybrook.edu

• porter@cs.unc.edu

• https://graphene-libraryos.slack.com (contact me for
invitation)

CCS'17 Tutorial: SGX Security and Privacy 42

http://github.com/oscarlab/graphene
mailto:chiache@cs.stonybrook.edu
mailto:porter@cs.unc.edu
https://graphene-libraryos.slack.com/

SCONE: A Lightweight Layer for SGX

• An enhanced C library with file and network shields

• Strictly requires no library OS

• Optimized syscall performance for enclaves

CCS'17 Tutorial: SGX Security and Privacy 43

SCONE Architecture

CCS'17 Tutorial: SGX Security and Privacy 44

SCONE C library (based on MUSL)

Asynchronous system calls

M:N threading

Network shield File system shield

Libraries

Application

SCONE module Intel SGX driver

Container (cgroups)

Inside enclave
(trusted)

Host OS kernel
(untrusted)

SCONE Architecture

• Network and FS shields:

encrypting and authenticating

network and file contents

• MUSL: small TCB (88KLoC)

• Asynchronous system calls:

avoid enclave exits

• SCONE module (optional):

improve performance

CCS'17 Tutorial: SGX Security and Privacy 45

SCONE C library (based on MUSL)

Asynchronous system calls

M:N threading

Network shield File system shield

Libraries

Application

SCONE module Intel SGX driver

Container (cgroups)

System Call Overheads

CCS'17 Tutorial: SGX Security and Privacy 46

1

10

100

1,000

10,000

100,000

1 2 4 8

sy
st

e
m

 c
al

l f
re

q
u

e
n

cy

(1
0

0
0

s/
se

co
n

d
)

Threads

synchronous
enclave exits

native

• pwrite() with 32 byte buffer
• 4 cores with hyper threading

Asynchronous System Calls

CCS'17 Tutorial: SGX Security and Privacy 47

1

10

100

1,000

10,000

100,000

1 2 3 4 5 6 7 8

Sy
st

e
m

 c
al

l f
re

q
u

e
n

cy

(1
0

0
0

s/
se

co
n

d
)

Threads

async

sync

nativeasync with 1 thread
achieves 80%

Apache Throughput

CCS'17 Tutorial: SGX Security and Privacy 48

0

1

2

3

4

0 15,000 30,000 45,000 60,000

La
te

n
cy

 (
se

co
n

d
s)

Throughput (requests / second)

nativeasyncsync

Memcached Throughput

CCS'17 Tutorial: SGX Security and Privacy 49

0

0.75

1.5

2.25

3

3.75

0 75000 150000 225000 300000

La
te

n
cy

 (
m

s)

Throughput (operations / second)

glibc + stunnel async
sync

inline encryption has
less overhead than TLS
proxy

• YCSB workload A (50/50)
• Data fits into EPC

SCONE Language Support

• Cross compiler for several languages

• C and C++

• GO

• Rust

• Python

• PHP

• Java (partial support, still work in progress)

CCS'17 Tutorial: SGX Security and Privacy 50

Demo: SCONE Cross Compiler

CCS'17 Tutorial: SGX Security and Privacy 51

SCONE Features

• Current SCONE features

• Support static and dynamic linking

• Unmodified binaries must be position independent
(built with –fPIC)

• Compatible with MUSL

• No multi-processing (fork / execve)

CCS'17 Tutorial: SGX Security and Privacy 52

SCONE Docker Integration

• SCONE supports (extended) Docker compose files

• Transparent attestation of services

• Transparent configurations

• Unmodified Docker Engine

• Docker engine runs outside enclave

CCS'17 Tutorial: SGX Security and Privacy 53

Availability

• Commercially available via SCONTAIN

• Acquire the software: www.scontain.com

• Contact: christof.fetzer@gmail.com

CCS'17 Tutorial: SGX Security and Privacy 54

http://www.scontain.com/
mailto:christof.fetzer@gmail.com

Panoply: POSIX API with Small TCB

• A POSIX library without Libc in enclave

• Placing applications and libraries into separate

enclaves

• 10kLoC TCB in Panoply shim library

CCS'17 Tutorial: SGX Security and Privacy 55

Panoply Architecture

CCS'17 Tutorial: SGX Security and Privacy 56

Panoply expels GLIBC outside of the enclave

Enclave-bound Logic

Panoply Shim Lib Trusted SGX Lib

GLIBC
Non-enclave

Logic
Untrusted

SGX Lib

Linux User-level Process

Inside enclave
(Trusted)

Outside enclave
(Untrusted)

“Micron”

Panoply Architecture

• Micron can be an application or a library

• Multi-enclave collaboration:

CCS'17 Tutorial: SGX Security and Privacy 57

Web Server SSL Library

Operating System

Micron Generation

CCS'17 Tutorial: SGX Security and Privacy 58

Panoply cross-compiler

(1) Compiler
instrumentation (2) Creating enclaves

E1

E2

Add calls to
Panoply API

Adding flow
checks

Source
code

Annotations

Intel
SDK

Panoply
Shim

Enclave-bound
code

Panoply
application

Ap

E1

E3

E2

Attacks on Multi-Enclave Applications

CCS'17 Tutorial: SGX Security and Privacy 59

SSL Library
Enclave

Webserver
Enclave

session_t session;
certificate_credentials_t xcred;

/* Specify callback function*/

/* Initialize TLS session */
init (&session, TLS_CLIENT);

certificate_set_verify_function (...);

Set SSL
Callback

OS

[SSL Lib]

Securing Multi-Enclave Applications

CCS'17 Tutorial: SGX Security and Privacy 60

Enclave 2Enclave 1

OS

Enclave
Identity

Call Ack

Pair-wise
Nonce

Attack Defenses

Spoofing Sender / Receiver Authentication

Replay Message Freshness

Silent Drops Reliable Delivery

Performance Overview

CCS'17 Tutorial: SGX Security and Privacy 61

App Panoply
Empty

enclave
Overhead

OpenSSL 3.16 2.79 13%

H2O 8.79 6.56 34%

FreeTDS 8.74 8.60 1%

Tor 6.72 4.54 48%

Panoply Features

• Currently support 254 POSIX API

• 91 guarantee to preserve API semantics

• Multi-process: fork and exec

CCS'17 Tutorial: SGX Security and Privacy 62

Availability

• Open-source at

https://shwetasshinde24.github.io/Panoply/

• Apache 2.0 License

• Contact: shweta24@comp.nus.edu.sg

CCS'17 Tutorial: SGX Security and Privacy 63

https://shwetasshinde24.github.io/Panoply/
mailto:shweta24@comp.nus.edu.sg

EDMM:
Enclave Dynamic Memory Mgmt

• Current SGX: fixed enclave memory and threads

• SGX2: adding pages at run time

• Reduce initial enclave memory size

• Dynamic thread creation

• Dynamic page protection (for dynamic loading / JIT)

• Supported in future Graphene-SGX

CCS'17 Tutorial: SGX Security and Privacy 64

Current SGX Limitations

• For integrity, each enclave

has a static memory layout

• Signed by users

• Initialized at loading time

• Reserved heap for malloc()

• # TCS = # Threads

CCS'17 Tutorial: SGX Security and Privacy 65

Enclave

App
data

App
code

Enclave
code

Enclave
data

SECS

TCS (*n)TCS (*n)TCS (*n)

Preserved
heap

EDMM on SGX2

• Adding and protecting

enclave pages at run time

• Page adding semantics:

• Normal or TCS pages

• Must be zeroed

• “Approved” by enclave

CCS'17 Tutorial: SGX Security and Privacy 66

Enclave

App
data

App
code

Enclave
code

Enclave
data

SECS

TCS (*n)TCS (*n)TCS (*n)

New page

EDMM Support in Graphene-SGX

• Compatibility and performance features

• Largely reduce startup time

• Dynamic thread creation

• Protect pages after finishing dynamic loading

• Support mprotect()

CCS'17 Tutorial: SGX Security and Privacy 67

Demo: Graphene-SGX with EDMM

CCS'17 Tutorial: SGX Security and Privacy 68

CCS'17 Tutorial: SGX Security and Privacy 69

Availability

• SGX2 release date expected in 1~2 years

• EDMM support will be open-sourced as part of

Graphene

• http://github.com/oscarlab/graphene

CCS'17 Tutorial: SGX Security and Privacy 70

http://github.com/oscarlab/graphene

Eleos: Exit-less Enclaves

• Avoids enclave exits and EPC paging

• Combined w/ SDK: Generating RPC-based interface

• Software-based paging: SUVM

CCS'17 Tutorial: SGX Security and Privacy 71

Direct Enclave Costs

• Enclave enter / exit: vs System call:

3,300 / 3,800 cycles 250 cycles

• LLC misses: 5.6~9.5 X

• EPC paging: 40,000 cycles for evict and page-in

CCS'17 Tutorial: SGX Security and Privacy 72

Indirect Cost: LLC Pollution

CCS'17 Tutorial: SGX Security and Privacy 73

LLC pollution causes up to 2X slowdown

0

0.5

1

1.5

2

2.5

1 32,768 65,546 131,072 262,144 524,288

Sl
o

w
d

o
w

n
 f

ac
to

r

Number of keys per request

KVS server
with batched requests

Indirect Cost: TLB Pollution

CCS'17 Tutorial: SGX Security and Privacy 74

TLB Flushes at every exits cause up to 6X slowdown

0
1
2
3
4
5
6

1 2 4 8 16 32

Sl
o

w
d

o
w

n
 f

ac
to

r

Number of keys per request

Open addressing Separate chaining
KVS server with different collision resolution:

(insensitive to TLB flushes)

RPC-based Enclave Interfaces

CCS'17 Tutorial: SGX Security and Privacy

75

Inside enclave (Trusted)Outside enclave (Untrusted)

Enclave
Software

“Client”

RPC
Thread Pool

“Server”

RPC Queue

untrusted_call()

Spinlock

Pass request

Execute

Unlock

SUVM: Secure User-Space Paging

CCS'17 Tutorial: SGX Security and Privacy 76

Eleos keeps EPC footprint static, to avoid fault-based exits

s_ptr<int> p =
suvm_malloc(1024);
…

Software
Address Translation

Page table

*p = 1;

Swap out

Encrypted

Enclave
memory

(Decrypted)

Fault Handler

Demo: Memcached on Native SGX

CCS'17 Tutorial: SGX Security and Privacy 77

Demo: Memcached with Eleos (RPC)

CCS'17 Tutorial: SGX Security and Privacy 78

Demo:
Memcached with Eleos (RPC+SUVM)

CCS'17 Tutorial: SGX Security and Privacy 79

Memcached Performance

CCS'17 Tutorial: SGX Security and Privacy 80

PRC improves 23%, RPC+SUVM improves 51%

134.9
165.3

203.0

0

50

100

150

200

250

Native SGX Eleos RPC Eleos
RPC+SUVM

B
an

d
w

id
th

 (
M

/s
)

Availability

• Open-source available at:

http://github.com/acsl-technion/eleos

• Contact: mark@ee.technion.ac.il

CCS'17 Tutorial: SGX Security and Privacy 81

http://github.com/acsl-technion/eleos
mailto:mark@ee.technion.ac.il

Acknowledgement

Assistance from the following individuals:

• Christof Fetzer (TU Dresden)

• Li Lei (Intel Labs)

• Meni Orenbach (Technion)

• Donald E. Porter (UNC at Chapel Hill / Fortanix)

• Shweta Shinde (Natl. Univ. of Singapore)

• Mark Silberstein (Technion)

• Mona Vij (Intel Labs)

CCS'17 Tutorial: SGX Security and Privacy 82

